Pancreatic B-cell function is altered by oxidative stress induced by acute hyperglycaemia
نویسندگان
چکیده
AIMS Type 2 diabetes is preceded by a symptom-free period of impaired glucose tolerance (IGT). Pancreatic B-cell function decreases as glucose intolerance develops. In many patients with IGT, fasting blood glucose is within normal limits and hyperglycaemia occurs only postprandially. We examined whether pancreatic B-cell function changes during acute hyperglycaemia induced by oral glucose loading. METHODS We calculated the insulinogenic index (I.I.) as an indicator of pancreatic B-cell function and measured serum levels of thioredoxin, a marker of cellular redox state, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative stress, during a 75-g oral glucose tolerance test (OGTT) in 45 subjects [24 patients with normal glucose tolerance (NGT), 14 with IGT and seven with Type 2 diabetes]. RESULTS Thioredoxin levels decreased after glucose loading [66.1 +/- 23.7, *59.3 +/- 22.4, *49.3 +/- 21.2 and *37.7 +/- 18.0 ng/ml, fasting (0 min) and at 30, 60 and 120 min, respectively; *P < 0.001 vs. fasting]. In contrast, concentrations of 8-OHdG peaked at 30 min and then gradually decreased (0.402 +/- 0.123, *0.440 +/- 0.120, 0.362 +/- 0.119 and 0.355 +/- 0.131 ng/ml, *P < 0.05 vs. fasting, P < 0.01 vs. 30 min). The insulinogenic index correlated with the change in thioredoxin levels (r = 0.34, P < 0.05). However, there was no relationship with the change in 8-OHdG levels from 0 to 30 min. CONCLUSIONS Hyperglycaemia in response to oral glucose impairs pancreatic B-cell function with decreasing thioredoxin levels. The augmented oxidative stress induced by hyperglycaemia may affect the cellular redox state. These findings strongly suggest that repeated postprandial hyperglycaemia may play an important role in the development and progression of diabetes mellitus.
منابع مشابه
Progesterone and Cilostazol Protect mice pancreatic islets from oxidative stress induced by hydrogen peroxide
Abstract Reactive oxygen species and oxidative stress impair β-cell function and reduce insulin secretion. It has been shown that progesterone and cilostazol possess antioxidant properties. The present study was aimed to investigate in vitro pretreatment effect of progesterone and cilostazol on insulin secretion as well as their protective effects against hydrogen peroxide-induced oxidative str...
متن کاملProgesterone and Cilostazol Protect mice pancreatic islets from oxidative stress induced by hydrogen peroxide
Abstract Reactive oxygen species and oxidative stress impair β-cell function and reduce insulin secretion. It has been shown that progesterone and cilostazol possess antioxidant properties. The present study was aimed to investigate in vitro pretreatment effect of progesterone and cilostazol on insulin secretion as well as their protective effects against hydrogen peroxide-induced oxidative str...
متن کاملNew Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis
Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...
متن کاملSalvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملEffect of Human Mesenchymal Stem Cell-Conditioned Medium Injection on Oxidative Stress Induced by Carbon Tetrachloride in the Liver Tissue of Rats
Background: Carbon tetrachloride (CCI4) is used as a chemical intermediate in industries. It can be converted into toxic reactive products of trichloromethyl radical under the influence of cytochrome P450 enzymes, and cause tissue damage, including liver damage, through oxidative stress. Liver transplantation is an effective treatment for liver failure but is limited due to the shortage of orga...
متن کامل